Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Complement Med Ther ; 23(1): 241, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461018

RESUMO

BACKGROUND: Between 40 and 50% of patients with Parkinson's disease (PD) experience anxiety and depression, associated with impaired physical function, high care dependency and mortality. Recently, the United States National Institutes of Health has urged the implementation of mindfulness practices in chronic illness care. Most research to date has examined the effects on chronically ill patients of complex interventions using a combination of mindfulness techniques. In PD patients, however, such complex modalities appear to hinder the technique mastery. Hence, the aim of this trial is to investigate the effects and underlying mechanism of individual mindfulness techniques among PD patients, as well as exploring participants' experience in using individual mindfulness techniques as a lifestyle intervention for stress and symptom management. METHODS: We will conduct an assessor-blind three-arm randomized waitlist-controlled trial with a descriptive qualitative evaluation. Up to 168 PD patients will be recruited from community settings and out-patient clinics, and randomized to meditation, yoga, or usual care group. Meditation and yoga sessions of 90-minute are held weekly for 8 weeks. Primary outcomes include anxiety and depression. Secondary outcomes include PD-related motor and non-motor symptoms and quality-of-life; and level of mindfulness and biomarkers of stress and inflammatory responses will be measured as mediating variables. All outcome evaluations will be assessed at baseline, 8 weeks, and 24 weeks. Following the intention-to-treat principle, generalized estimating equation models and path analysis will be used to identify the treatment effects and the mediating mechanisms. A subsample of 30 participants from each intervention group will be invited for qualitative interviews. DISCUSSION: The study would also generate important insights to enhance the patients' adaptation to debilitating disease. More specifically, symptom management and stress adaptation are highly prioritized healthcare agenda in managing PD. The research evidence will further inform the development of community-based, nurse-led compassionate care models for neurodegenerative conditions, which is complementary to existing health services. TRIAL REGISTRATION: WHO Primary Registry - Chinese Clinical Trials Registry number: ChiCTR2100045939; registered on 2021/04/29 ( https://www.chictr.org.cn/showproj.html?proj=125878 ).


Assuntos
Meditação , Atenção Plena , Doença de Parkinson , Yoga , Estados Unidos , Humanos , Depressão/terapia , Doença de Parkinson/terapia , Atenção Plena/métodos , Ansiedade/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Brain Behav ; 13(2): e2886, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624932

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) mutation is a common genetic risk factor of Parkinson's disease (PD). Presynaptic dysfunction is an early pathogenic event associated with dopamine (DA) dysregulation in striatum of the brain. DA uptake activity of DA uptake transporter (DAT) affects synaptic plasticity and motor and non-motor behavior. Synaptogyrin-3 (SYNGR3) is part of the synaptogyrin family, especially abundant in brain. Previous in vitro studies demonstrated interaction between SYNGR3 and DAT. Reduced SYNGR3 expression was observed in human PD brains with unclear reasons. METHODS: Here, we further explored whether inducing SYNGR3 expression can influence (i) cellular DA uptake using differentiated human SH-SY5Y neuronal cells, (ii) striatal synaptosomal DA uptake in a mutant LRRK2R1441G  knockin mouse model of PD, and (iii) innate rodent behavior using the marble burying test. RESULTS: Young LRRK2 mutant mice exhibited significantly lower SYNGR3 levels in striatum compared to age-matched wild-type (WT) controls, resembling level in aged WT mice. SYNGR3 is spatially co-localized with DAT at striatal presynaptic terminals, visualized by immuno-gold transmission electron microscopy and immunohistochemistry. Their protein-protein interaction was confirmed by co-immunoprecipitation. Transient overexpression of SYNGR3 in differentiated SH-SY5Y cells increased cellular DA uptake activity without affecting total DAT levels. Inducing SYNGR3 overexpression by adeno-associated virus-7 (AAV7) injection in vivo into striatum increased ex vivo synaptosomal DA uptake in LRRK2 mutant mice and improved their innate marble burying behavior. CONCLUSION: Brain SYNGR3 expression may be an important determinant to striatal DA homeostasis and synaptic function. Our preliminary behavioral test showed improved innate behavior after SYNGR3 overexpression in LRRK2 mutant mice, advocating further studies to determine the influence of SYNGR3 in the pathophysiology of DA neurons in PD.


Assuntos
Neuroblastoma , Doença de Parkinson , Idoso , Animais , Humanos , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Sinaptogirinas/genética , Sinaptogirinas/metabolismo
3.
NPJ Parkinsons Dis ; 8(1): 115, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088364

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.

4.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409005

RESUMO

Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson's disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5'-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5'-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11-17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.


Assuntos
Vesículas Sinápticas , Fatores de Transcrição , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Fatores de Transcrição/metabolismo
5.
Transl Neurodegener ; 11(1): 5, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101134

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA) represent two most common genetic causes of Parkinson's disease (PD). Both genes are important in the autophagic-lysosomal pathway (ALP), defects of which are associated with α-synuclein (α-syn) accumulation. LRRK2 regulates macroautophagy via activation of the mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) and the calcium-dependent adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways. Phosphorylation of Rab GTPases by LRRK2 regulates lysosomal homeostasis and endosomal trafficking. Mutant LRRK2 impairs chaperone-mediated autophagy, resulting in α-syn binding and oligomerization on lysosomal membranes. Mutations in GBA reduce glucocerebrosidase (GCase) activity, leading to glucosylceramide accumulation, α-syn aggregation and broad autophagic abnormalities. LRRK2 and GBA influence each other: GCase activity is reduced in LRRK2 mutant cells, and LRRK2 kinase inhibition can alter GCase activity in GBA mutant cells. Clinically, LRRK2 G2019S mutation seems to modify the effects of GBA mutation, resulting in milder symptoms than those resulting from GBA mutation alone. However, dual mutation carriers have an increased risk of PD and earlier age of onset compared with single mutation carriers, suggesting an additive deleterious effect on the initiation of PD pathogenic processes. Crosstalk between LRRK2 and GBA in PD exists, but its exact mechanism is unclear. Drugs that inhibit LRRK2 kinase or activate GCase are showing efficacy in pre-clinical models. Since LRRK2 kinase and GCase activities are also altered in idiopathic PD (iPD), it remains to be seen if these drugs will be useful in disease modification of iPD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Autofagia/genética , Glucosilceramidase/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia
6.
Transl Neurodegener ; 11(1): 10, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35152914

RESUMO

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/metabolismo , Camundongos , Mitocôndrias/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia
7.
Autophagy ; 17(10): 3196-3220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300446

RESUMO

Mitochondrial dysfunction causes energy deficiency and nigrostriatal neurodegeneration which is integral to the pathogenesis of Parkinson disease (PD). Clearance of defective mitochondria involves fission and ubiquitin-dependent degradation via mitophagy to maintain energy homeostasis. We hypothesize that LRRK2 (leucine-rich repeat kinase 2) mutation disrupts mitochondrial turnover causing accumulation of defective mitochondria in aging brain. We found more ubiquitinated mitochondria with aberrant morphology associated with impaired function in aged (but not young) LRRK2R1441G knockin mutant mouse striatum compared to wild-type (WT) controls. LRRK2R1441G mutant mouse embryonic fibroblasts (MEFs) exhibited reduced MAP1LC3/LC3 activation indicating impaired macroautophagy/autophagy. Mutant MEFs under FCCP-induced (mitochondrial uncoupler) stress showed increased LC3-aggregates demonstrating impaired mitophagy. Using a novel flow cytometry assay to quantify mitophagic rates in MEFs expressing photoactivatable mito-PAmCherry, we found significantly slower mitochondria clearance in mutant cells. Specific LRRK2 kinase inhibition using GNE-7915 did not alleviate impaired mitochondrial clearance suggesting a lack of direct relationship to increased kinase activity alone. DNM1L/Drp1 knockdown in MEFs slowed mitochondrial clearance indicating that DNM1L is a prerequisite for mitophagy. DNM1L knockdown in slowing mitochondrial clearance was less pronounced in mutant MEFs, indicating preexisting impaired DNM1L activation. DNM1L knockdown disrupted mitochondrial network which was more evident in mutant MEFs. DNM1L-Ser616 and MAPK/ERK phosphorylation which mediate mitochondrial fission and downstream mitophagic processes was apparent in WT using FCCP-induced stress but not mutant MEFs, despite similar total MAPK/ERK and DNM1L levels. In conclusion, aberrant mitochondria morphology and dysfunction associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in mutant LRRK2 MEFs and mouse brain.Abbreviations: ATP: adenosine triphosphate; BAX: BCL2-associated X protein; CDK1: cyclin-dependent kinase 1; CDK5: cyclin-dependent kinase 5; CQ: chloroquine; CSF: cerebrospinal fluid; DNM1L/DRP1: dynamin 1-like; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; LAMP2A: lysosomal-associated membrane protein 2A; LRRK2: leucine-rich repeat kinase 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MEF: mouse embryonic fibroblast; MFN1: mitofusin 1; MMP: mitochondrial membrane potential; PAmCherry: photoactivatable-mCherry; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RAB10: RAB10, member RAS oncogene family; RAF: v-raf-leukemia oncogene; SNCA: synuclein, alpha; TEM: transmission electron microscopy; VDAC: voltage-dependent anion channel; WT: wild type; SQSTM1/p62: sequestosome 1.


Assuntos
Autofagia , Mitofagia , Animais , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Mitofagia/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Autophagy ; 16(2): 347-370, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30983487

RESUMO

Parkinson disease (PD) is an age-related neurodegenerative disorder associated with misfolded SNCA/α-synuclein accumulation in brain. Impaired catabolism of SNCA potentiates formation of its toxic oligomers. LRRK2 (leucine-rich repeat kinase-2) mutations predispose to familial and sporadic PD. Mutant LRRK2 perturbs chaperone-mediated-autophagy (CMA) to degrade SNCA. We showed greater age-dependent accumulation of oligomeric SNCA in striatum and cortex of aged LRRK2R1441G knockin (KI) mice, compared to age-matched wildtype (WT) by 53% and 31%, respectively. Lysosomal clustering and accumulation of CMA-specific LAMP2A and HSPA8/HSC70 proteins were observed in aged mutant striatum along with increased GAPDH (CMA substrate) by immunohistochemistry of dorsal striatum and flow cytometry of ventral midbrain cells. Using our new reporter protein clearance assay, mutant mouse embryonic fibroblasts (MEFs) expressing either SNCA or CMA recognition 'KFERQ'-like motif conjugated with photoactivated-PAmCherry showed slower cellular clearance compared to WT by 28% and 34%, respectively. However, such difference was not observed after the 'KFERQ'-motif was mutated. LRRK2 mutant MEFs exhibited lower lysosomal degradation than WT indicating lysosomal dysfunction. LAMP2A-knockdown reduced total lysosomal activity and clearance of 'KFERQ'-substrate in WT but not in mutant MEFs, indicating impaired CMA in the latter. A CMA-specific activator, AR7, induced neuronal LAMP2A transcription and lysosomal activity in MEFs. AR7 also attenuated the progressive accumulation of both intracellular and extracellular SNCA oligomers in prolonged cultures of mutant cortical neurons (DIV21), indicating that oligomer accumulation can be suppressed by CMA activation. Activation of autophagic pathways to reduce aged-related accumulation of pathogenic SNCA oligomers is a viable disease-modifying therapeutic strategy for PD.Abbreviations: 3-MA: 3-methyladenine; AR7: 7-chloro-3-(4-methylphenyl)-2H-1,4-benzoxazine; CMA: chaperone-mediated autophagy; CQ: chloroquine; CSF: cerebrospinal fluid; DDM: n-dodecyl ß-D-maltoside; DIV: days in vitro; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GWAS: genome-wide association studies; HSPA8/HSC70: heat shock protein 8; KFERQ: CMA recognition pentapeptide; KI: knockin; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LDH: lactate dehydrogenase; LRRK2: leucine-rich repeat kinase 2; MEF: mouse embryonic fibroblast; NDUFS4: NADH:ubiquinone oxidoreductase core subunit S4; NE: novel epitope; PD: Parkinson disease; RARA/RARα: retinoic acid receptor, alpha; SNCA: synuclein, alpha; TUBB3/TUJ1: tubulin, beta 3 class III; WT: wild-type.


Assuntos
Envelhecimento/metabolismo , Autofagia Mediada por Chaperonas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/tratamento farmacológico , Multimerização Proteica , Proteólise , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Fibroblastos/metabolismo , Fluorescência , Técnicas de Introdução de Genes , Proteínas de Choque Térmico HSC70/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Doença de Parkinson/genética , Especificidade por Substrato
9.
Transl Neurodegener ; 8: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428316

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta and intracellular inclusions called Lewy bodies (LB). During the course of disease, misfolded α-synuclein, the major constituent of LB, spreads to different regions of the brain in a prion-like fashion, giving rise to successive non-motor and motor symptoms. Etiology is likely multifactorial, and involves interplay among aging, genetic susceptibility and environmental factors. MAIN BODY: The prevalence of PD rises exponentially with age, and aging is associated with impairment of cellular pathways which increases susceptibility of dopaminergic neurons to cell death. However, the majority of those over the age of 80 do not have PD, thus other factors in addition to aging are needed to cause disease. Discovery of neurotoxins which can result in parkinsonism led to efforts in identifying environmental factors which may influence PD risk. Nevertheless, the causality of most environmental factors is not conclusively established, and alternative explanations such as reverse causality and recall bias cannot be excluded. The lack of geographic clusters and conjugal cases also go against environmental toxins as a major cause of PD. Rare mutations as well as common variants in genes such as SNCA, LRRK2 and GBA are associated with risk of PD, but Mendelian causes collectively only account for 5% of PD and common polymorphisms are associated with small increase in PD risk. Heritability of PD has been estimated to be around 30%. Thus, aging, genetics and environmental factors each alone is rarely sufficient to cause PD for most patients. CONCLUSION: PD is a multifactorial disorder involving interplay of aging, genetics and environmental factors. This has implications on the development of appropriate animal models of PD which take all these factors into account. Common converging pathways likely include mitochondrial dysfunction, impaired autophagy, oxidative stress and neuroinflammation, which are associated with the accumulation and spread of misfolded α-synuclein and neurodegeneration. Understanding the mechanisms involved in the initiation and progression of PD may lead to potential therapeutic targets to prevent PD or modify its course.

10.
Cereb Cortex ; 27(1): 11-23, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365778

RESUMO

In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo , Neurônios/metabolismo , Animais , Quinases relacionadas a CDC2 e CDC28/genética , Ciclo Celular , Espinhas Dendríticas , Hipocampo/patologia , Potenciação de Longa Duração , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Agregados Proteicos , Aprendizagem Espacial
11.
Sci Rep ; 7: 40887, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098219

RESUMO

Aging, genetics and environmental toxicity are important etiological factors in Parkinson's disease (PD). However, its pathogenesis remains unclear. A major obstacle is the lack of an appropriate experimental model which incorporates genetic susceptibility, aging and prolonged environmental toxicity. Here, we explored the interplay amongst these factors using mutant LRRK2R1441G (leucine-rich-repeat-kinase-2) knockin mice. We found that mutant primary cortical and mesencephalic dopaminergic neurons were more susceptible to rotenone-induced ATP deficiency and cell death. Compared with wild-type controls, striatal synaptosomes isolated from young mutant mice exhibited significantly lower dopamine uptake after rotenone toxicity, due to reduced striatal synaptosomal mitochondria and synaptic vesicular proton pump protein (V-ATPase H) levels. Mutant mice developed greater locomotor deficits in open-field tests than wild-type mice following low oral rotenone doses given twice weekly over 50 weeks (half their lifespan). The increased locomotor deficit was associated with specific reduction in striatal mitochondrial Complex-I (NDUFS4) in rotenone-treated mutant but not in similarly treated wild-type mice. Our unique experimental model which incorporates genetic effect, natural aging and prolonged oral environmental toxicity administered to mutant knockin LRRK2 mice over half their life span, with observable and measurable phenotype, is invaluable in further studies of the pathogenic process and therapeutics of PD.


Assuntos
Apoptose/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/patologia , Rotenona/farmacologia , Administração Oral , Envelhecimento , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Técnicas de Introdução de Genes , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Rotenona/uso terapêutico , Sinaptossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Mol Neurodegener ; 11(1): 71, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884163

RESUMO

BACKGROUND: Insulin resistance is the major pathogenesis underlying type 2 diabetes mellitus (T2DM) and these patients have doubled risk of Alzheimer's disease (AD). Increasing evidence suggests that insulin resistance plays an important role in AD pathogenesis, possibly due to abnormal GSK3ß activation, causing intra- and extracellular amyloid-beta (Aß) accumulation. Adiponectin (APN) is an adipokine with insulin-sensitizing and anti-inflammatory effects. Reduced circulatory APN level is associated with insulin resistance and T2DM. The role of APN in AD has not been elucidated. In this study, we aim to examine if adiponectin deficiency would lead to cerebral insulin resistance, cognitive decline and Alzheimer's-like pathology in mice. METHODS: To study the role of adiponectin in cognitive functions, we employed adiponectin-knockout (APN-KO) mice and demonstrated chronic APN deficiency in their CNS. Behavioral tests were performed to study the cognitions of male APN-KO mice. Brains and tissue lysates were collected to study the pathophysiological and molecular changes in the brain of APN-KO mice. SH-SY5Y neuroblastoma cell line was used to study the molecular mechanism upon APN and insulin treatment. RESULTS: Aged APN-deficient mice displayed spatial memory and learning impairments, fear-conditioned memory deficit as well as anxiety. These mice also developed AD pathologies including increased cerebral Aß42 level, Aß deposition, hyperphosphorylated Tau proteins, microgliosis and astrogliosis with increased cerebral IL-1ß and TNFα levels that associated with increased neuronal apoptosis and reduced synaptic proteins levels, suggesting APN deficiency may lead to neuronal and synaptic loss in the brain. AD pathologies-associated APN-KO mice displayed attenuated AMPK phosphorylation and impaired insulin signaling including decreased Akt induction and increased GSK3ß activation in the hippocampus and frontal cortex. Aged APN-KO mice developed hippocampal insulin resistance with reduced pAkt induction upon intracerebral insulin injection. Consistently, APN treatment in SH-SY5Y cells with insulin resistance and overexpressing Aß induce higher pAkt levels through AdipoR1 upon insulin treatment whereas the induction was blocked by compound C, indicating APN can enhance neuronal insulin sensitivity through AMPK activation. CONCLUSION: Our results indicated that chronic APN deficiency inactivated AMPK causing insulin desensitization and elicited AD-like pathogenesis in aged mice which also developed significant cognitive impairments and psychiatric symptoms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/deficiência , Doença de Alzheimer/patologia , Encéfalo/patologia , Resistência à Insulina/fisiologia , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout
13.
Biochem J ; 473(17): 2671-85, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474410

RESUMO

Autosomal dominant mutations that activate the leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved threonine/serine residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen-derived B-cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2-phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase-inactive LRRK2[D2017A] knockin MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knockin mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser(935) and Ser(1292) biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A+S935A] knockin MEFs indicating that phosphorylation of Ser(910) and Ser(935) and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo The Rab Phos-tag assay has the potential to significantly aid with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Knockout , Fosforilação , Proteínas rab de Ligação ao GTP/genética
14.
Environ Pollut ; 215: 103-112, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179329

RESUMO

Marine Protected Areas (MPAs) in Hong Kong are situated in close proximity to urbanized areas, and inevitably influenced by wastewater discharges and antifouling biocides leached from vessels. Hence, marine organisms inhabiting these MPAs are probably at risk. Here an integrative approach was employed to comprehensively assess ecological risks of eight priority endocrine disrupting chemicals (EDCs) in four MPAs of Hong Kong. We quantified their concentrations in environmental and biota samples collected in different seasons during 2013-2014, while mussels (Septifer virgatus) and semi-permeable membrane devices were deployed to determine the extent of accumulation of the EDCs. Extracts from the environmental samples were subjected to the yeast estrogen screen and a novel human cell-based catechol-O-methyltransferase ELISA to evaluate their estrogenic activities. The results indicated ecological risks of EDCs in the Cape d'Aguilar Marine Reserve. This integrated approach can effectively evaluate ecological risks of EDCs through linking their concentrations to biological effects.


Assuntos
Disruptores Endócrinos/análise , Disruptores Endócrinos/farmacologia , Estrogênios/farmacologia , Poluentes da Água/análise , Animais , Bivalves/química , Catecol O-Metiltransferase/biossíntese , Cultura em Câmaras de Difusão , Ensaio de Imunoadsorção Enzimática , Sedimentos Geológicos/química , Hong Kong , Humanos , Células MCF-7/efeitos dos fármacos , Medição de Risco , Água do Mar/química , Leveduras/efeitos dos fármacos
15.
Int J Cardiol ; 203: 964-71, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26625322

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS: Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. RESULTS: DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 µM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 µM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS: DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ataxia de Friedreich/terapia , Células-Tronco Pluripotentes Induzidas , Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Piridonas/farmacologia , Ubiquinona/análogos & derivados , Antioxidantes/farmacologia , Deferiprona , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/biossíntese , Proteínas de Ligação ao Ferro/genética , Miócitos Cardíacos/patologia , Estresse Oxidativo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquinona/farmacologia , Frataxina
16.
Brain Behav ; 5(4): e00321, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25798335

RESUMO

BACKGROUND: Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. Recently, we described a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP. Further to this finding, here we describe the functional effect of this mutation. METHODS: As PMCA4 removes cytosolic calcium, we measured transient changes and the time-dependent decay of cytosolic calcium level as visualized by using fura-2 fluorescent dye with confocal microscopy in human SH-SY5Y neuroblastoma cells overexpressing either wild-type or R268Q mutant PMCA4. RESULTS: Overexpressing both wild-type and R268Q PMCA4 significantly reduced maximum calcium surge after KCl-induced depolarization as compared with vector control cells. However, cells overexpressing mutant PMCA4 protein demonstrated significantly higher level of calcium surge when compared with wild-type. Furthermore, the steady-state cytosolic calcium concentration in these mutant cells remained markedly higher than the wild-type after SERCA inhibition by thapsigargin. CONCLUSION: Our result showed that p.R268Q mutation in PMCA4 resulted in functional changes in calcium homeostasis in human neuronal cells. This suggests that calcium dysregulation may be associated with the pathogenesis of FSP.


Assuntos
Povo Asiático/genética , Mutação de Sentido Incorreto , Paraplegia Espástica Hereditária/genética , Western Blotting , Cálcio/análise , Corantes Fluorescentes , Fura-2 , Humanos , Microscopia Confocal/métodos , ATPases Transportadoras de Cálcio da Membrana Plasmática , Reação em Cadeia da Polimerase em Tempo Real
17.
Ann Clin Transl Neurol ; 1(3): 199-208, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25356398

RESUMO

OBJECTIVE: Mutations in leucine-rich repeat kinase 2 (LRRK2) pose a significant genetic risk in familial and sporadic Parkinson's disease (PD). R1441 mutation (R1441G/C) in its GTPase domain is found in familial PD. How LRRK2 interacts with synaptic proteins, and its role in dopamine (DA) homeostasis and synaptic vesicle recycling remain unclear. METHODS: To explore the pathogenic effects of LRRK2(R1441G) mutation on nigrostriatal synaptic nerve terminals and locomotor activity, we generated C57BL/6N mice with homozygous LRRK2(R1441G) knockin (KI) mutation, and examined for early changes in nigrostriatal region, striatal synaptosomal [(3)H]-DA uptake and locomotor activity after reserpine-induced DA depletion. RESULTS: Under normal conditions, mutant mice showed no differences, (1) in amount and morphology of nigrostriatal DA neurons and neurites, (2) tyrosine hydroxylase (TH), DA uptake transporter (DAT), vesicular monoamine transporter-2 (VMAT2) expression in striatum, (3) COX IV, LC3B, Beclin-1 expression in midbrain, (4) LRRK2 expression in total cell lysate from whole brain, (5) α-synuclein, ubiquitin, and tau protein immunostaining in midbrain, (6) locomotor activity, compared to wild-type controls. However, after a single intraperitoneal reserpine dose, striatal synaptosomes from young 3-month-old mutant mice demonstrated significantly lower DA uptake with impaired locomotor activity and significantly slower recovery from the effects of reserpine. INTERPRETATION: Although no abnormal phenotype was observed in mutant LRRK2(R1441G) mice, the KI mutation increases vulnerability to reserpine-induced striatal DA depletion and perturbed DA homeostasis resulting in presynaptic dysfunction and locomotor deficits with impaired recovery from reserpine. This subtle nigrostriatal synaptic vulnerability may reflect one of the earliest pathogenic processes in LRRK2-associated PD.

18.
J Neuroimmunol ; 276(1-2): 64-70, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25205217

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a CNS inflammatory demyelinating disorder. T helper 1 (Th1) and T helper 17 (Th17) cells are important in MS immunopathogenesis. Level of endothelin-1 (ET-1), a potent vasoconstrictor, is increased in sera of MS patients. We studied the role of ET-1 in experimental allergic encephalomyelitis (EAE), a MS animal model. METHODS: EAE is induced in transgenic mice overexpressing endothelial ET-1 (TET-1), transgenic mice overexpressing astrocytic ET-1 (GET-1) and non-transgenic (NTg) mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. EAE scores, spinal cord histology, serum proinflammatory cytokines levels, and proinflammatory cytokines production from splenocytes of ET-1 transgenic and NTg mice with EAE were studied. RESULTS: ET-1 transgenic mice developed more severe EAE than NTg with increased inflammation and demyelination in spinal cord. The mean maximum EAE scores for GET-1, TET-1 and NTg mice with EAE were 4.84, 4.31 and 4.05 respectively (p<0.05). Serum levels of IL-6, IL-17A, IFN-γ and TNF-α were higher in ET-1 transgenic than NTg mice with EAE (p<0.05) while serum IL-4 levels were similar. mRNA levels of IL-6, IL-17A, IFN-γ and TNF-α from cultured splenocytes were higher in ET-1-transgenic than NTg mice with EAE (p<0.05) while IL-4 mRNA levels were similar. Consistently, levels of IL-6, IL-17A, IFN-γ and TNF-α in culture media of splenocytes were higher in ET-1 transgenic than NTg mice with EAE (p<0.05) while IL-4 levels were similar. CONCLUSIONS: Mice with endothelial or astrocytic ET-1 overexpression developed more severe EAE with increased splenic lymphocyte production of Th1 and Th17 proinflammatory cytokines.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Endotelina-1/metabolismo , Análise de Variância , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Endotelina-1/genética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , Medula Espinal/patologia , Baço/citologia , Baço/efeitos dos fármacos
19.
PLoS One ; 9(8): e104790, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119969

RESUMO

Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study, we identified a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over 7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of FSP.


Assuntos
Povo Asiático/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Paraplegia Espástica Hereditária/genética , Sequência de Bases , Exoma/genética , Genes Dominantes/genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Dobramento de Proteína , Análise de Sequência de DNA
20.
Pflugers Arch ; 466(9): 1831-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24327207

RESUMO

Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca(2+) transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.


Assuntos
Cardiomiopatias , Ataxia de Friedreich/complicações , Técnicas In Vitro , Células-Tronco Pluripotentes , Adulto , Cardiomiopatias/etiologia , Feminino , Ataxia de Friedreich/genética , Humanos , Sobrecarga de Ferro/complicações , Proteínas de Ligação ao Ferro/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...